

easypaysy
Improving Bitcoin's UX by replacing addresses with account IDs

José Femenías Cañuelo
jose.femenias@gmail.com

December, 1st, 2019

Abstract

Even after the advent of the more user-friendly bech32 [1] format, one of the major pain
points in the UX of Bitcoin [2] is the need to exchange and use a different address for
each payment. We present easypaysy, a layer-two protocol for Bitcoin, that enables the
creation of non-custodial accounts, directly on the blockchain. Upon opening an account,
the mining process assigns it a permanent account ID -such as btc@543847.636/577- that
becomes the destination for payments addressed to the account. Although the account ID
is immutable, the easypaysy protocol provides mechanisms to ensure that each payment
goes to a different bitcoin address, thus achieving a level of privacy similar to regular
Bitcoin payments. The protocol also introduces IOC payments, that enable the sender of a
payment -instead of its recipient- to be the one that chooses the payment address, while
ensuring that only the payee has access to the corresponding private key. IOC is the
foundation for non-interactive payments that offer an enhanced level of privacy. We also
show how easypaysy accounts offer some additional benefits, such as the ability to
implement pull payments, their integration with the Lightning Network, and the
non-repudiable nature of their payments. Finally, we explore some scalability techniques
that can give support to the creation of several billions of accounts per year.

Keywords: easypaysy, bitcoin, litecoin, layer-two, non-custodial account, ioc,

repudiability, ux, pull payments, inversion of control, BIP39

1 Introduction

The use and format of bitcoin addresses has
been recognized by many in the Bitcoin
community as a deficient mechanism from the
UX's perspective. In the rationale section of
Bitcoin Improvement Proposal #13 we can
read: “...bitcoin addresses should be
deprecated in favor of a more user-friendly
mechanism for payments... Another criticism is
that bitcoin addresses are inherently insecure
because there is no identity information tied to
them; if you only have a bitcoin address, how
can you be certain that you're paying who or

what you think you're paying?...A future BIP
or BIPs should propose more user-friendly
mechanisms for making payments, or for
verifying that you're sending a payment to the
Free Software Foundation and not Joe
Random Hacker.”

Easypaysy deals with these challenges by
completely hiding bitcoin addresses from the
user experience, replacing them with account
IDs, that are significantly more user-friendly,
permanent and secure.

1

2 Accounts

Accounts are a widely used metaphor for user
interaction with many services, financial or
otherwise: email, phone, PayPal, banking…
They provide a consistent anchor point for the
owner of the account and a convenient way for
others to reach the account holder through her
account ID.
Although Bitcoin payments weren't originally
designed with an account system in mind, its
flexible architecture and permissionless nature
allow for an account structure to be
superimposed over the regular flow of
transactions.
We propose the creation of easypaysy, a
layer-two protocol, that brings this powerful
metaphor to the blockchain, in order to solve
the usability problems described in the
previous section.

2.1 Definition and properties

An easypaysy account is a standard Bitcoin
transaction, built in a specific way in
accordance with the protocol, that allows
blockchain payments to be directed to its fixed
ID, hiding the underlying bitcoin addresses
from the user experience.

Easypaysy accounts have similarities with
regular bank accounts, such as:

● ID. Each easypaysy account has a
unique, permanent identifier, where
payments are sent to.

● Identity. Behind every account there
is a cryptographic identity.

● Confidentiality . Only the account 1

holder can view its transaction history
and balance.

1 Type_0 payments don’t enjoy this property, so
they are discouraged. See “2.6.1 Payment types”.

● Push and pull payments . In addition 2

to traditional push payments,
easypaysy accounts can support pull
payments, such as direct debit.

● Non-repudiation. All easypaysy
payments are non-repudiable.

They also have several characteristics that
differentiate them from bank accounts, making
them:

● Non-custodial. Opening, using and
maintaining an easypaysy account is
permissionless.

● Hard to censor. As we can see in
“2.4. Censorship”, easypaysy
payments are practically immune to
censorship.

● Irreversible. Payments to an
easypaysy accounts are final, unless
the output script used specifies
otherwise.

● Pseudonymous. No real-life
information is directly stored within
the account.

2.2 Account attributes

In addition to its permanent ID, every
easypaysy account contains three pieces of
information:

- Identity key: A point in the Secp256k1
elliptic curve, used to sign messages and to
exchange encrypted information between the
payer and the payee.

- Value key: A point in the Secp256k1 elliptic
curve, used as a basis for non-interactive
payments (see “3.2.1 IOC payments”).

2 Pull payments are planned for a future release of
the protocol. See “3.1.3 Pull payments”.

 2

- Rendezvous descriptor: A JSON document
that describes the kind of payments the account
holder is willing to accept and the protocols
and means of contact that the payer can use to
interact with the account.

The first two pieces of information -Identity
key and Value key- are exposed in the
signature of the transaction that -by definition-
must be a 2-of-2 multisig address. The
Rendezvous descriptor is serialized -in a highly
compressed manner- within a mandatory
OP_RETURN output.

2.3 Account ID

Easypaysy IDs are assigned quasi-randomly
during the mining process, as we'll see below.
Once a transaction has been incorporated into a
block that has been successfully appended to
the blockchain, the account will acquire an
account ID, in accordance with this syntax:

btc@block_height.tx_ordinal/checksum 3

In the expression above, block_height is the
height of the block that contains the transaction
with the account information (starting at 0, the
Genesis block), tx_ordinal is the ordinal of the
transaction within the block (starting at 0, the
coinbase transaction) and checksum is a value
that protects the integrity of the account ID.

There are three major ways to express an
account ID: Canonical ID, Mnemonic ID and
Domain ID.

2.3.1 Canonical ID

Canonical IDs use decimal numbers for their
constituent parts, except for the btc@ prefix,
that is constant.

3 When using Testnet, the coin symbol ‘btc’ will be
replaced with ‘tbtc’.

For example, an account anchored in the 636th
transaction of block #543847 could have this
canonical ID:

btc@543847.636/577

The checksum part is extensible, up to 4
chunks of 3 digits each, separated by hyphens,
as shown in this example:

btc@543847.636/577-218-376-867

2.3.2 Mnemonic ID

Mnemonic IDs use BIP39 words as a way to
express the different parts that make up the ID.
The same account, shown in the previous
example, can be expressed with this mnemonic
ID:

btc@cancel-mind.exhibit/motion

Or, in case the account holder chooses to use
the longer version of the checksum, with:

btc@cancel-mind.exhibit/motion-custom -fun -sugar

To express a number in this format, you simply
convert it to base 2048, using the
corresponding BIP39 word for each digit
(0=abandon, 2047=zoo), concatenated with
hyphens. Checksum words, however, only use
even words, so, before the lookup, each value
has to be multiplied by 2.

As we can see in table 1, only the words that
have an even index are used as checksum
words. The main purpose of this is to use a
wider range of words from the dictionary.
Otherwise, since checksum chunks go from
000 to 999, the last word used would be
language, thus leaving all the words from
laptop and onward unused.

 3

BIP39 word Checksum value

0 abandon 000
1 ability ---
2 able 001
3 about ---
···

1996 wet 998
1997 whale ---
1998 what 999

Table 1.- Checksum words

The odd-indexed words (ability, about,...) are
not used as checksum words, so they serve
perfectly as decoy words, as we'll see later in
the example UI mockup (see “2.3.5 Mixed
IDs”).

2.3.3 Domain ID

In addition to these two, wholly
blockchain-centric approaches, the protocol
also contemplates a third type of account ID,
that relies on the Internet Domain Name
System. (Please note that, while the first two
forms of the account ID emerge automatically
upon creating an easypaysy account, Domain
IDs are purely optional. They are a better fit
for a corporate or professional setting, due to
the recurrent costs and the hassle associated
with buying, configuring and maintaining a
domain name in a secure way).

Domain IDs follow this format:

btc@<fully_qualified_domain_name>/checksum

2.3.3.1 Creating a Domain ID

To create a Domain ID, upon successfully
activating an easypaysy account, users can

insert the account ID with its checksum, into a
TXT record of a domain of their own, so that a
simple lookup will suffice for any interested
party to find out the user's account.

Continuing with the last example, if the owner
of that easypaysy account also owns the
domain example.com, she could associate it
with her easypaysy account, to create this
Domain ID:

btc@example.com/motion-custom

It is of note that the checksum is the only part
of the ID that forces an attacker that manages
to hijack or spoof her DNS TXT record to
redirect it to another account that has the very
same checksum . This becomes prohibitively 4

expensive as the size of the checksum grows,
since he needs to pay a fee for each account
created, as we'll see later (see “2.3.8 Choosing
a checksum size”).

2.3.4 Real-world identity

Easypaysy accounts don't store or link to any
kind of real-world identity. The only identity
behind the Identity key is that of the account
ID.

Any scheme linking outwards the blockchain
to a real-world identity -such as the domain
name of an entity- would both increase the
onchain storage needs for the account and
invite all sorts of cybersquatting.

If the owner of an account wishes to publicly
show her association with her easypaysy ID,
the link is best done inward, from the
real-world into the blockchain. That can be
easily accomplished by using her Domain ID,
as we have just seen in the previous point.
Also, any real-word mechanisms commonly
used for announcing bank accounts, phone

4 See "2.4.1 Self censorship”, for another way to
fight account hijacking.

 4

numbers, email addresses, etc., will also work
with easypaysy IDs, so there is really no need
to turn the blockchain into some sort of
directory service.

2.3.5 Mixed IDs

Canonical IDs use numbers, while their
Mnemonic counterpart use words. However, it
is entirely possible to mix both, to offer a
better user experience. For instance, when
using a smaller form factor device -such as a
phone- the user may be requested to first input
the digits that make up the Canonical ID, then
the checksum words corresponding to its
Mnemonic ID. This way, the UI could show a
full size numeric keypad for the first part of the
data input, and a series of words for the
second, as shown below.

Figures 1.a. through 1.d. present a mockup of a
UI showing a possible interaction sequence,
first entering the Canonical ID with a numeric
keypad, then specifying the checksum by
selecting them from array of labeled buttons
that include the four expected checksum words
(1.b. through 1.d.)

Fig. 1.a.- A numeric keyboard is used to type
in the Canonical ID, minus the checksum.

The first part of the data entry is enough to
detect any mistakes that point to a non-existent
account. Then, the user is presented with the
expected checksum words (motion, custom,

fun, sugar) along with 12 decoy words, chosen
at random. Just four clicks are needed to enter
the checksum this way, instead of the 12 that
would be required if she had to type the full set
of checksum numbers using the numeric
keypad.

 5

Fig. 1.b.- A second screen presents the 4
checksum words intermixed with 12 decoy
words. Please note that it also shows the
Mnemonic ID, that the user didn't specify, as
soon as the user clicks on the first checksum
word.

Fig. 1.c.- Clicking on the 2nd checksum word.

 6

Fig. 1.d.- Clicking on the 3rd checksum word.

Fig. 1.e.- Clicking on the last checksum word.

2.3.6 Alias ID

The quasi-random mechanism used to assign
the ID of an account, can lead to awkward
combinations of words, when expressing the
ID using entries from the BIP39 dictionary.

A simple way to avoid an undesired
combination of words is to simply discard the
account, preferably by revoking it. However,
that is both wasteful and inconvenient, so it
pays to offer the user other ways of dealing
with this issue. The naive approach of
attempting to remove from the dictionary every
word with negative connotations such as war,
kill, weapon, stupid, etc. quickly reveals itself
as futile.

 7

On the one hand, the number of potentially
offensive words grows very soon out of hand,
thus rendering the dictionary ineffective. On
the other, cultural or personal preferences can
instill a word or set of words with drastically
different connotations. Even seemingly
innocent words, such as trophy and wife, can
become offensive when paired together.

Also, the very same combination of words can
go from desirable to inappropriate, depending
on the context. A lawyer may be happy to use
the account ID btc@divorce-wife.very/soon
while a marriage counselor would probably
reject it.

Easypaysy tackles this issue by assigning every
account two different Mnemonic IDs, and
letting the account holder decide which one to
use.

The main account ID is called standard ID,
while the alternate receives the name alias ID.

Alias IDs use the same BIP39 english
dictionary as standard IDs, but in reverse order
(0=zoo, 2047=abandon).

Depending on the way the dictionary is sorted,
the account of the previous example
(btc@1050583.1943/829) could be identified
by these two IDs:

Standard ID: btc@divorce-wife.very/soon
Alias ID: btc@say-agree.artist/cost

Upon creating a new account, the account
holder, after being presented with both options,
can apply her own personal preferences to
choose the one that she finds more appealing.

2.3.7.1 ID disambiguation

The fact that both the standard and alias forms
of an ID use the very same set of words, taken
from the BIP39 dictionary, introduces a source
of ambiguity. That is, given a specific ID like
btc@divorce-wife.very/soon , how can a parser
know for sure whether it is a standard ID, thus
pointing to btc@1050583.1943 or an alias ID,
that points to btc@3143720.104?

The answer lies in the checksum . Due to the 5

way checksum words are selected, words used
in standard ID checksums are incompatible
with those of their alias ID counterpart. As a
result, when the parser isolates the first
checksum word -soon-, it can immediately
determine that the ID is in standard form, thus
removing the ambiguity.

In the mockup UI depicted in “2.3.5 Mixed
IDs” we saw how the user types in a canonical
ID that can result in two Mnemonic IDs:

Canonical:
btc@543847.636/577-218-376-867

Mnemonic (standard):
btc@cancel-mind.exhibit/motion-custom -fun -sugar

Mnemonic (alias):
btc@tell-indoor.race/hurry-siren-peanut-cheese

The two potential sets of checksum words
(“motion , custom , fun , sugar” or “hurry, siren,

peanut, cheese ”) are intermixed with eight
additional words, used as decoys.

In this example, as soon as the user selected
the first checksum word -motion- the app knew
she was using the standard form of the
Mnemonic, and it was able to display the

5 In fact, even without resorting to the checksum,
block #3143720 is much further into the future
than block #1050583. So, during the about 40
years that will separate the creation of both blocks,
the parser can resolve the ID unequivocally before
analyzing the checksum.

 8

proper ID, that is, btc@cancel-mind.exhibit,
thus reassuring the user and eliminating any
possible ambiguity.

2.3.7 Computing the checksum

The checksum is a critical part of an account
ID, since it provides the basis to ensure that
payments aren't sent to the wrong destination
by mistake or malice.

Checksums are calculated by following this
algorithm:

1) Calculate:

tx_chain = block_hash &

 merkle_root &
 wtxid

(where block_hash is the hash of the block
containing the account's transaction,
merkle_root is the root of the Merkle tree of said
block, wtxid is the double SHA256 of the 6

serialized transaction and the & represents
concatenation).

2) Compute:

tx_digest = digest(sha256(tx_chain))

3) Divide tx_digest in four groups of 8 bytes:

tx_digest_0 = tx_digest[0..7]
tx_digest_1 = tx_digest[8..15]
tx_digest_2 = tx_digest[16..23]
tx_digest_3 = tx_digest[24..31]

4) Finally, assign each checksum_chunk the
remainder resulting from dividing each value of
tx_digest_i by 1000 (% indicates modulus of the
integer division):

checksum_chunk_0 = tx_digest_0 % 1000
checksum_chunk_1 = tx_digest_1 % 1000
checksum_chunk_2 = tx_digest_2 % 1000
checksum_chunk_3 = tx_digest_3 % 1000

6 See https://bitcoincore.org/en/segwit_wallet_dev/

2.3.8 Choosing a checksum size

Even without the checksum, oftentimes it will
be possible to detect mistakes when the user
mistypes an account. Since it is to be expected
that, even if easypaysy accounts became very
popular, the majority of the transactions would
not host easypaysy accounts, whenever a
mistyped account ID points to a regular or
even non-existent transaction, the software can
readily identify the problem and alert the user.

However, due to the great incentive of
profiting from user mistakes, it seems
reasonable to think that some nefarious actors
would try to game the system, for example by
inserting many accounts at random, or even
aiming for specific block spots, waiting to
exploit typing errors from a particular account.

For example, if a popular exchange has the
account btc@802300.507 it would be
tempting for an adversary to create an account
at btc@803200.507 or btc@804300.507, etc.
Even though the order of a transaction within a
block is out of the control of the sender of the
transaction, it isn't inconceivable that a miner
could agree to place a particular transaction at
a requested spot, in exchange for an extra
financial reward. Due to these potential threats,
the checksum becomes an integral part of the
account ID. Because of the way it is computed,
involving the hash of the block where the
account resides, it can only be known after the
account's transaction has been included in a
block and the block has been mined. That
implies that, in practice, it is impossible to
choose the checksum for a new account. Even
the miners themselves can't tamper with this
process, since the account's checksum is based
on the block hash itself in an unpredictable
manner, due to the one-way nature of the hash
function.
Thus, the checksum can be seen as a random
number, ranging from 000-000-000-000 to
999-999-999-999. As a result, the probability

 9

of two different accounts having the same full
checksum is 1 / 1012.
The user should adjust the number of
checksum chunks in accordance with the
amount being transferred.
For example, a user could type
btc@541290.852/021 as the destination
account ID when she is sending sending BTC
0.001 and btc@541290.852/021-288-184 when
she is sending BTC 3.5 to the same account.

Users can be reasonably expected to make
more mistakes when using Canonical IDs
rather than Mnemonic IDs. Because of this, as
a general rule, it is advisable to use longer
checksums when using Canonical IDs.

2.3.8.1 Extended checksums

It is possible to build arbitrarily long
checksums, by repeatedly hashing the last
digest and extracting the next set of four
checksum values, which are concatenated
using dots, like in this example:

btc@bring-gentle.dish/tissue-picture-country
-process. exotic-bracket-surge-traffic .scene-alc
ohol-raw-girl

btc@461577.505/907-657-196-686.320-107-
873-923 .770-024-714-393

This might make sense for extremely
high-value transactions, but it seems overkill
and unwieldy for most use cases, so it isn't a
recommended practice.

2.4. Censorship

Censoring an easypaysy account per se is
almost impossible, since the accounts
themselves reside in the Bitcoin blockchain,
which is widely available by multiple channels,
even by satellite, and each payment goes to a
different address, impossible to neither predict
nor detect by a third party.

However, it can be quite easy to implement a
blacklist feature, that protects users from
sending a transaction to a known undesirable
destination.

If the user specifies a Canonical ID or
Mnemonic ID that has been blacklisted, her
wallet software will readily warn her.
If she is using the Domain ID of an account
that has been hijacked, the wallet software can
detect the redirection to a blacklisted account's
tx, and alert her of the risk.

Should any entity try to use this wallet feature
to censor unwanted accounts, the user can have
the option to either disregard the warning, load
a different blacklist, or simply choose another
wallet software.
Another censorship threat derives from the
possibility of censoring not the account itself,
but the rendezvous channels detailed in its
Rendezvous descriptor. A powerful entity may
be locally or globally capable of blocking
access to an email account or MQTT server,
for example. Having different protocols may
alleviate this attack, but until a sufficiently
robust protocol exists, this could remain an
issue affecting interactive payments.

On the other hand, non-interactive payments
are completely immune to censorship, as long
as the user is capable of sending a regular
Bitcoin transaction. This fact may discourage
trying to censor interactive payments at all, to
avoid pushing adversaries toward the much
stealthier IOC payments (see “2.6.1 Payment
types”).

2.4.1 Self censorship

The non-custodial nature of easypaysy
accounts introduces new challenges, such as
dealing with the loss of the keys used to create
and maintain an account.

 10

If the keys are stolen, but not lost, the owner of
the account can and should revoke the account
as soon as possible (see “2.5 Account life
cycle”). If the keys are missing, the account
owner loses the ability to update or revoke the
account anymore. In that case, the best course
of action may be to disown the account, by
publicly announcing the situation by the same
means previously used to announce the
account ID. Aso, if the Rendezvous descriptor
allows interactive payments, the contact
protocols can be used to alert a potential payer
of the issue.
Additionally, the owner of the account could
try to include her own account in a black list
by directly dealing with the list maintainers.
She could prove her ownership by signing a
message, in case she still has access to at least
one of the two private keys (Identity or Value).

2.5 Account life cycle

An account can be in any of these five states
(see figure 2, next):

Fig. 2: State diagram of an account

a.- Funded: In this state, the account itself
doesn't exist yet, but its associated 2-of-2
multisig address has already been funded by
broadcasting a valid transaction that has an
output pointing to it. The 2-of-2 multisig
address is formed by building a multiple
signature address that requires the signatures of
both the Identity key and the Value key, in that
order.

b.- Pending: An account is in this state when a
transaction, in the proper easypaysy format,
that spends the funds described in state a), has
been broadcast to the blockchain but it hasn't
reached maturity yet; that is, it isn't included
yet in a block with 100 or more confirmations.
This interval must be used by the account
holder to test that the account has been
properly set up and all the related rendezvous

 11

services are fully operational. She could, for
example, create an email account as indicated
in the Rendezvous descriptor. If needed, she
can also issue a remedial update transaction to
fix any problems or errors she may have
detected during this phase, in which case the
counter for the 100 confirmations will be reset
to zero.

c.- Active: The pending account enters this
state after its container block has reached
maturity, that is, it has at least 100
confirmations after entering the pending state
or 6 confirmations after an update has been
issued -see state d)-. Any funds lost or delayed
due to a misconfiguration of an active account
(like specifying a payment method the account
holder isn't prepared or willing to process or
wrongly specifying a rendezvous protocol
endpoint) are the responsibility of the account
owner.

d.- Updating: An account can be updated at
any point in time after its activation, by
spending its input with a new transaction that
has an output with the same multisig address as
the input and a second output that contains the
updated Rendezvous descriptor. After
activation, whenever an account is updated, it
will enter the "Updating" state, until six
confirmations have passed. This way, the
account owner has the opportunity and time to
fix an erroneous update before it becomes
active. An update issued for an account
currently in the Updating state will reset the
counter to zero.

e.- Revoked: An account can be revoked at any
time by spending it and sending its funds to a
different address. Revocations take effect as
soon as they are included in a block.

It is the responsibility of the potential payer to
check the status of the destination account and
act accordingly.

More specifically, the payer's software:

- Must either use a fully validating node
or at least perform all the required SPV
checks to verify the integrity of every
transaction in the chain of updates
leading to the most recent version of the
account.

- Must refrain from sending payments to
any account whose status is other than
Active.

- Must follow the chain of updates (if any)
and only use the information of the most
recent update.

- Must fully comply with all the terms of
the account's policy as described in the
Rendezvous descriptor of the last update
(see “2.6 Rendezvous descriptor”).

In figure 3, we can see a sample account, and
the series of transactions used to create and
change its state, until its final revocation.

 12

Fig. 3: Transaction history of an account

 13

2.6 Rendezvous descriptor

In addition to the account ID, derived from its
inclusion in a block, and the Identity and Value
keys, that can be extracted from the account's
transaction signature, the third main item of
information of an account is the Rendezvous
descriptor.
The Rendezvous descriptor is a JSON
document, stored in the provably prunable
output of the transaction, as the data field of
the OP_RETURN operator.

{
 "Document_name":
"EASYPAYSY_RENDEZVOUS_DESCRIPTOR",
 "Version": "0",
 "Accepted_payments": [
 "TYPE_1_RENDEZVOUS",
 "TYPE_2_IOC_OVERT"
],
 "Mail": "fiber.burden.erupt@gmail.com",
 "Bitmessage": "BM-2cTZhb···NnZTjC69ke9BieU"
}

Fig. 4: Example of a Rendezvous descriptor

The Rendezvous descriptor is serialized using
a highly optimized, dictionary-based,
compression algorithm, before storing it into
the OP_RETURN data field. The sample
descriptor shown in figure 4 only takes 7 bytes
in the current implementation of the protocol.

It includes several attributes:

1.- Document name: A string that identifies
this particular easypaysy document, with this
fixed literal:
"EASYPAYSY_RENDEZVOUS_DESCRIPTOR"

2.- Version: A number that specifies the
version of the Rendezvous descriptor (integer,
starts with 0).

3.- Accepted payments: A list of the payments
that the account owner is willing to accept.

Possible payments are:

TYPE_0_UNSAFE_FIXED,
TYPE_1_RENDEZVOUS,
TYPE_2_IOC_OVERT,
TYPE_3_IOC_COVERT

The account must accept at least one of these
payment types, though any non-empty
combination is also valid.

2.6.1 Payment types
Here is a brief description of each payment
type:

TYPE_0_UNSAFE_FIXED:
Type_0 payments must always use the same
address, more specifically the address
associated with the Value key. This is widely
regarded as a bad practice, due to the total lack
of privacy involved, thus its name. In fact, it is
mainly included in the protocol so it can be
given a discouraging name that dissuades its
use (since blocking this type of payments is
unfeasible). If possible, these payments should
be avoided both by the account holder, by not
listing it among the valid payment types, and
by the payer, by using an alternative payment
type, if available, or just refusing to make the
payment altogether.

TYPE_1_RENDEZVOUS:
Rendezvous payments require interaction with
the account in order to get a payment address
for each payment.
If the “Accepted_payments” item includes this
type of payment, the Rendezvous descriptor
must list at least one contact protocol and its
corresponding endpoint. In order to provide
redundancy and protection against DOS
attacks, the account can include more than one
contact protocol and more than one endpoint
for the same protocol.
(Other measures against DOS attacks include
the requirement to provide hashcash with the
payment request, forcing its request to come

 14

signed from a valid easypaysy account, or even
requiring a token payment via LN to get a
payment address. These and other measures
could be implemented on a case by case basis
and in response to actual attacks to the account,
as they begin to happen. In any case,
Hollywood payments -Type_2 and Type_3-
are immune to DOS attacks.).

In the previous example (see figure 4) the
account accepts two rendezvous mechanisms,
“Email” and “Bitmessage” with their
corresponding endpoints.
At the time of writing this, there are up to four
communication mechanisms planned as
rendezvous protocols, namely:

Https, email, Bitmessage and MQTT.

Note: The Rendezvous compression dictionary
has reserved a token for a possible fifth
protocol named “Easypaysy” designed
specifically for this task, but that is out of the
scope of current efforts.

TYPE_2_IOC_OVERT,

TYPE_3_IOC_COVERT:
Both of these payments are non-interactive. As
such, they do not require additional entries in
the Rendezvous descriptor to specify a
communication protocol and endpoint.

Inversion Of Control payments (a.k.a.
"Hollywood payments") invert the control of
the payment process so that it is the payer, not
the payee the one choosing the destination
address of each payment.

The mechanisms needed to enable this type of
payments are described in a section below (see
“3.2.1 IOC payments”).

For now, suffice it to say that the only
difference between a Type_2 and Type_3
payment is that the former is way more easily

detectable as a Hollywood payment than the
latter.

2.6.2 Compressing the Rendezvous descriptor

Space in the Bitcoin blockchain is a scarce
resource that many argue has been misused,
particularly in the past. The 0.9.0 release of
Bitcoin Core added support for a new script
function, OP_RETURN. The release notes 7

read: “This change is not an endorsement of
storing data in the blockchain. The
OP_RETURN change creates a
provably-prunable output, to avoid data
storage schemes – some of which were already
deployed – that were storing arbitrary data
such as images as forever-unspendable TX
outputs, bloating bitcoin's UTXO database.”

Whereas there is no actual limit on how much
data can be stored within an OP_RETURN
output, Bitcoin core nodes do not relay more
than 80 bytes, so the protocol abides by this
limit. The easypaysy protocol takes advantage
of this OP_RETURN operator in a most
respectful way, striving to make compatible the
need to store some information with a very
efficient compression algorithm in order to
minimize the externality costs.

While the decision to use JSON over a
proprietary or binary format may seem at odds
with that intent, the compression levels
achieved, in excess of 95% in many cases,
makes us believe this approach represents a
valid tradeoff between ease of use and
efficiency.

Two main techniques are used to attain this
very high level of compression, namely, using
a dictionary-based compression algorithm and
using variables that are expanded at run time.

7 Bitcoin Core 0.9.0 release notes

 15

https://bitcoin.org/en/release/v0.9.0

2.6.2.1 Dictionary compression

The dictionary itself is a very simple JSON
document with a series of attribute/value pairs.
Each attribute is a token that represents a literal
to be compressed. Tokens are expressed in
hexadecimal, as shown in table 2. Each token
can occupy one or more bytes. Single byte
tokens use the hexadecimal range:
 [0x00..0x1E] ⋃ [0x80..0xFE].
Multiple-byte tokens begin with 0x1F. When
decoding a compressed Rendezvous descriptor
stored within the OP_RETURN output, the
decompression algorithm replaces every token
with its associated string. The remaining bytes,
whose value is in the range [0x20..0x7F], are
transcribed verbatim.

The dictionary is manually crafted taking into
account both the length of the expanded literal,
and its expected frequency.

···
 "91": "<payments_mask:!>",
 "92": "<payments_mask:\">",
 "93": "<payments_mask:#>",
 "94": "<payments_mask:$>",
 "95": "<payments_mask:%>",
 "96": "<payments_mask:&>",
 "97": "<payments_mask:">",
 "98": "<payments_mask:(>",
 "99": "<payments_mask:)>",
 "9A": "<payments_mask:*>",
 "9B": "<payments_mask:+>",
 "9C": "<payments_mask:,>",
 "9D": "<payments_mask:->",
 "9E": "<payments_mask:.>",
 "9F": "<payments_mask:/>",
···

Table 2.- Sample token entries in the
compression dictionary

In the current version of the prototype
implementation, the majority of tokens only
take one byte, even though some values are
still unused. For example, as we can see in

Table 2, tokens 0x91 through 0x9F are
assigned to the literals that store the variable
<payments_mask:?>, used to represent the
combination of types of payments accepted by
the account.

2.6.2.2 Rendezvous variables

The second strategy employed to save space
when serializing the rendezvous descriptor is
the use of variables. These variables are
evaluated at run time, converting a compact
placeholder into a notably longer string.

For instance, the variable userid(-), which
only takes one byte after begin tokenized by
the compression algorithm, could be evaluated
into something like:

river-congress-tattoo

There are variables to represent the main
attributes of an account such as its Canonical
ID, Mnemonic ID, TXID, Identity and Value
public key and address, etc.

 16

3 Payments

Easypaysy payments can be divided into
interactive and non-interactive payments.

3.1 Interactive payments

Interactive payments (Type_1), as their name
denotes, require an interaction between the
sender and the receiver of a payment before the
transaction can be prepared.

The purpose of this interaction is twofold:

First, it lets the payee decide and communicate
the payer what address to use for each
payment.

Second, because the address provided for the
payment is signed with the Identity key of the
recipient account, the payer can prove that he
paid to a sanctioned address.

As we can see in figure 5, to make a push
payment the payer must first interact with the
blockchain, in order to retrieve the information
associated with the account he wants to pay to,
then with the payee to get a payment address
and its signature, and finally with the
blockchain again to broadcast the transaction.

The detailed sequence of events is as follows:

1.- The payer retrieves the account information
from the blockchain.
2.- The payer then sends a JSON document to
the recipient -named “ROE_REQUEST”- asking
for her Rules of Engagement. These are the
conditions the recipient demands to supply a
new payment address. More specifically, the
recipient can ask for a certain amount of
hashcash, to combat spammers.
3.- The recipient sends back her answer using
another JSON document, named
“ROE_REPLY”.

Fig. 5: Sequence diagram of push interactive
payments

4.- The payer sends a “PAYMENT_REQUEST”
document, whose attributes include:
amount_to_pay, hashcash_stamp, payment

label, reply_to address, ...
5.- The payee will then send the
“PAYMENT_REPLY” a JSON document with
the requested address. This document includes
a non-mandatory “Pay_to_invoice” attribute,
that the payee can fill in with a Lightning
Network invoice for the amount requested. If
given the option, the payer will then decide
whether to pay on-chain or using the
Lightning Network.

The “PAYMENT_REPLY” document also
includes an attribute named
“Pay_to_address_signature” and another
named “Pay_to_invoice_signature” where the
payee includes the corresponding signatures.
These attributes confer the non-repudiability
characteristic to these payments.
6.- The payer will either broadcast a
transaction to the blockchain or pay using the
Lightning Network (when given the option).

 17

3.1.1 Encryption

All the communications between payer and
payee must be encrypted using the ECIES
protocol. This security protocol relies on a
ECDH exchange to share an AES key, which is
then used to encrypt and decrypt the JSON
documents described above.

Even if the communication channel is
compromised, the attacker will also need
access to the private Identity key of the
account in order to be able to supplant the
account owner.

3.1.2 Perfect forward secrecy

To ensure perfect forward secrecy, all the
interactions -except for the first one, that uses
the Identity key of the recipient's account- must
use an ephemeral -preferably
non-deterministic- public key. This way, even
if the Identity key of the account is ever
compromised, the privacy of past or future
interactions between the payer and the payee is
preserved. To that end, every request includes
an attribute named
"Encrypt_answer_with_public_key" where each
party communicates the other the public key to
be used to encrypt the next message.

3.1.3 Pull payments 8

All typical Bitcoin payments are push
payments. That means that it is always the
payer who initiates the sequence of events that
ends with a payment.

Pull payments, on the other hand, allows one
party -usually a business- to withdraw or ‘pull’
funds from the other party -usually a
customer-. We can see their sequence diagram
in figure 6.

8 Pull payments are planned for a future release of
the protocol.

They are typically used when there is a
contractual relationship between a company
and its customers, such as with phone
operators, cable tv providers, etc.

When both payer and payee have an easypaysy
account that supports interactive payments
(Type_1), it is possible to set up pull payments
between them.
Such a setting, which seems particularly well
suited to a dedicated secure hardware device,
could enable one party to authorize a series of
recurring payments from another, within a
given set of rules.

One customer could, for instance, authorize her
ISP to invoice her for up to a maximum
monthly amount. She can do this by inserting a
new rule within her secure device that
identifies the ISP's easypaysy ID, and the
maximum monthly amount she is willing to
pay automatically.

Fig. 6: Sequence diagram of interactive
payments - Pull

Every month, her ISP will send a JSON
document, named "PULL_REQUEST" and
signed with its Identity key, requesting the
payment for the past month's service. Upon
receipt, the user's device will verify the
signature of the request, matching it against the

 18

source easypaysy account and validate
whatever rules she defined -most importantly
the due date and the amount-. If everything
matches the given set of rules, it will then issue
a payment transaction to the given address, that
came encrypted and signed within the pull
request.

3.2 Non-interactive payments

These payments present a challenge over their
interactive counterparts, since they require the
sender of the payment to come up with a
different and unpredictable address for each
new payment, without any interaction with the
account holder.
In figure 7, we can see the sequence diagram
of these payments.

Fig. 7: Sequence diagram of non-interactive
payments

In order to enable non-interactive payments,
the easypaysy protocol defines a new type of
payments, named IOC payments (Inversion Of
Control) or, more informally, Hollywood
payments.

In contrast with regular Bitcoin payments,
where the recipient first creates a
private/public key pair and then communicates
the payer its associated address, IOC payments
invert the control over this process so that it is
the sender of the payment, not the recipient,

who chooses a new payment address for each
transaction.
This inversion of control presents a series of
challenges, as we see below:

a) The payer must be able to select a
payment address of which he is certain
the recipient will have the
corresponding private key.

b) The payee must be able to detect that
she has been sent an IOC payment,
without first getting in contact with the
payer, just by observing the flow of
new transactions.

c) The payee must be certain that the
payer doesn't know the private key of
the address used in the payment.

d) The addresses must be selected in a
way that ensures only the payer and
payee themselves will be able to link
this payment.

e) The address must be selected in a way
so that the payee can't repudiate the
payment.

IOC payments, as we can see below, fulfill all
of these requirements.

3.2.1. IOC payments

{1} Let Alice and Bob be two Bitcoin users,
so that Bob wants to make one (or more)
on-chain payment(s) to Alice.

{2} Alice publishes a transaction in the
blockchain that we'll call an easypaysy root
transaction (ep_root_tx). This transaction is the
easypaysy account of Alice and <a,A> is her
Value key.

 Alice knows a and A, where:

 {2.1} a ; a private key that
Alice creates by any secure means.

 {2.2} A = a * G ; the public key
associated with the private key <a>.

 19

Please note that Alice signs <ep_root_tx>
using <a>, exposing <A> in the process, but
keeping <a> secret for herself .

{3} Bob has knowledge of Alice's account ID
through any channel (website, company's
stationery, business card, email...). Bob parses
Alice's account ID and retrieves her easypaysy
account information from the <ep_root_tx>
transaction.

{4} Bob creates a secure private/public pair of
keys, unique for this payment:

 {4.1} b ; Bob's private key
 {4.2} B = b * G ; Bob's public key

{5} Bob calculates a scalar <n> and its
corresponding point in the Secp256k1 elliptic
curve <N>, so that:

 {5.1} n = digest(sha256(b*A))
 = digest(sha256(b*a*G))
 {5.2} N = n * G

{6} Bob calculates <C>, another point in the
elliptic curve, so that:

 {6.1} c = a + n; (Note that, for now,
neither Bob nor Alice can calculate <c>, since
Bob doesn't know <a> and Alice doesn't know
<n>)

 {6.2} C = (a + n) * G
 = (a * G) + (n * G)

 ; a * G = A {2.2}
 ; n * G = N {5.2}

 {6.3} C = A + N ; Bob knows A
because of {3} and N because of {5.2}.

{7} Bob derives <C_address>, the bitcoin
address corresponding to <C>, and creates a
payment transaction for Alice that has (at least)
two outputs.

Bob broadcasts this transaction and (optionally)
notifies Alice of its WTXID.

 output #0:

Amount: any
Script: standard p2pkh,
 using <C_address>

output #1:

Amount: 0
Script: OP_RETURN DATA

(where DATA = , as indicated in {4})

{8} Upon receiving notification from Bob in
{7}, or just by monitoring the flow of new
transactions, Alice:

 {8.1} Retrieves from the
<OP_RETURN data> field of the <output #1>
of the TX created and published in {7}

 {8.2} Calculates n, c and C:

 n = digest(sha256(a*B)); {4.2}
 = digest(sha256(a*b*G))
 = digest(sha256(b*a*G));

 ;(same <n> as in {5.1})

 c = a + n

 ;(same <c> as in {6.1})

 C = c * G

{9} Having computed <c> and <C> in {8.2},
Alice verifies that she is in control of the funds
locked in the <output #1> of the transaction
that Bob sent her in {7}.

{10} In practice, the protocol defines a
deterministic way to compute a new value of
<n> for each payment. As a result, future
payments from Bob to Alice don't need to
include a public point within an OP_RETURN
output.

 20

 {10.1} n = digest(sha256(i&b*A))
 ; i is the index
 of the payment
 from Bob to
 Alice

3.2.1.1 Non-repudiability of IOC payments

Interactive payments derive their
non-repudiable nature from the fact that,
during the interaction between payer and
payee, the payee must sign the prescribed
payment address with her Identity key.

That signature is lacking in the case of
Hollywood payments, so the payer has to
resort to a different way to disqualify any
attempt of repudiation.

He needs to prove that:

a) He sent an IOC transaction to the
proper easypaysy account, following
all the prescriptions of the protocol.

b) The account was active at the time the
payment was sent, and its Rendezvous
descriptor allowed the specific type of
payment he used (Type_3 or Type_4).

c) He provided a valid point in the
Secp256k1 elliptic curve within the
OP_RETURN data field of the same
transaction, encoded in the right
format (see point {4} of the
algorithm).

d) At least one of the outputs of his
transaction is sent to the address,
associated to the point described in c).

e) The transaction has been successfully
inserted in the blockchain, and has
enough confirmations to be considered
immutable.

In order to prove all of that, the payer will
simply need to disclose both the WTXID of the
transaction and the value of from which he
derived , included in the OP_RETURN
field.

Thus, by following the algorithm described
before, any impartial observer can attest that
the payer received a valid payment of which
she has enough information to unlock it.
Since the payer uses a different,
non-predictable value of for each
transaction, by revealing it he will only
compromise the privacy of that particular
payment.

3.2.2 Overt vs Covert payments

As we have just seen in the previous point, the
first IOC payment from a sender to a particular
account, requires some information, encoded
within an OP_RETURN output, that the
recipient will use both to detect that she is the
intended destination and to gather enough
information to compute the corresponding
private key.

The minimum information needed to that end
is the value of the public key B (see “3.2.1 IOC
payments”) that the sender is using for that
particular payment.

3.2.3 Uber-compressed format

Easypaysy defines a custom format for storing
a public key, named uber-compressed, which
builds upon the traditional compressed format
for ECDSA keys. Instead of taking 33 bytes, it
has a variable size that goes from a maximum
of 31 bytes to a minimum of 28.

This is the format to be used within the
OP_RETURN data field of the first payment to
a particular easypaysy account.

In order to strip those extra bytes from the
public key, the format mandates that:

a) The header byte, the one that indicates
the parity of the Y coordinate of the
public key, is not included.

b) The leftmost byte of the public key,
that must always be zero, is also

 21

stripped from the public key
representation.

c) If the next up to 3 bytes are zero (this
is optional) they must be removed
from the representation.

Due to the requirement expressed in b) when
selecting a public key for the payment, the
sender must ensure that the first byte is zero.
This is easily accomplished by iterating a
nonce to derive until it fulfills the
condition.

The computational effort needed to find a
public key whose first byte is zero -128
attempts on average- is negligible when using
any modern CPU.

Thus, it seems reasonable to impose this
requirement to save one byte. The sender can
then choose to spend more CPU time in order
to find up to three more zero bytes, or stick to
the required minimum of one.

The recipient will have to perform up to six
attempts to reconstruct the key that comes in
the OP_RETURN output , with an average of 9

less than three, since shorter paddings will
probably more common, at least in the near
future.

Overt payments must add the prefix bytes "EP"
(hex 4550) to the public key, while covert
payments mustn't.

This is in the only difference between overt
and covert payments.

9 Since it is permissible to include some user data
right after the uber-compressed public key, she can't
know for sure its actual size without trying out the
different possibilities.

Fig. 8: Structure of the OP_RETURN data
field of an overt payment

Fig. 9: Structure of the OP_RETURN data
field of a covert payment

In practice, it means that covert payments are
somewhat cheaper for the sender -since they
always take two bytes less than their overt
counterparts- while being a little more taxing
for the recipient, since she has to scan and test
every transaction that has an OP_RETURN
output with a length longer than 27 bytes.

Since the user is allowed to include custom
information right after the public key, it will be
very difficult for an observer to know for sure
that a covert payment is an IOC payment. This
comes at the cost of the recipient having to
analyze more transactions than in the case of
overt payments.

 22

3.3 Bandwidth

The bandwidth that a particular user needs to
process every potential IOC transaction within
a block, in order to detect which transactions
are addressed to her, can be estimated using
this formula:

A * F * S, where:

A = Average number of transactions
per block.

F = Fraction of transactions with an
OP_RETURN potentially hosting an
IOC payment (size >= 28 bytes).

S = Average size of the OP_RETURN
output of potential IOC transactions.

The average size of the OP_RETURN
metadata is 23.4 bytes [4], with about 1.16% of
transactions containing an OP_RETURN
output.

We are going to consider 100% of that 1.16%
as potential transactions that need to be
scanned.

To that value, we need to add the expected
number of IOC transactions that have an
OP_RETURN data field attached. Only the
first IOC transaction between any two given
easypaysy users need to contain an
OP_RETURN output.

For lack for any empirical data on the use of
easypaysy, we will make these pretty extreme
assumptions:

● We'll use 2500 as the average number
of transactions per block.

● 90 % of all the transactions in a block
are easypaysy transactions.

● 90 % of those transactions are IOC
transactions.

● 90 % of those IOC transactions include
an OP_RETURN data field.

● The value of S is 40 bytes

We can then estimate:

A = 2500
F = 0.016 + 0.9 * 0.9 * 0.9 = 0.745
S = 40

Then, A * F * S = 74500 bytes per block.

So, provided a user has access to a beacon
node that relays all OP_RETURN data fields
(we are counting here all of them, including the
non-candidates, to provide better privacy) the
required data speed is 74500 bytes/block * 8
bits/byte * 6 blocks/hour * 3600 secs/hour =
993.3 bits/second, well below the max speed of
even GPRS . 10

As for the total monthly data transfer, we can
estimate 365.25 / 12 days/month * 144
blocks/day * 73060 bytes/block = 300,221,980
bytes/month or about 286.6 MB/month.

10
https://en.wikipedia.org/wiki/General_Packet_Radi
o_Service#Coding_schemes_and_speeds

 23

https://en.wikipedia.org/wiki/General_Packet_Radio_Service#Coding_schemes_and_speeds
https://en.wikipedia.org/wiki/General_Packet_Radio_Service#Coding_schemes_and_speeds

4 Scalability
Bitcoin has currently a maximum throughput
of about 7 transactions per second [3], with no
credible plans to increase that on-chain
capacity in the near future, if at all. Since each
easypaysy account uses at least one transaction,
this places a hard limit on how many accounts
can be open in any given time frame.

Easypaysy can only be really helpful if it ever
becomes widely used, so it pays to analyze the
feasibility of onboarding a large number of
users, and the impact that would have on the
blockchain.

There is no good data to measure the actual
number of Bitcoin users, with some known
estimates varying wildly between 13.2 million

 and 40 million . 11 12

Just taking the lower of these two estimates,
assuming that 10% of all the transactions in a
block are used to create new easypaysy
accounts (not counting the funding
transactions, since a single transaction can fund
multiple accounts), we can estimate about 0.1 *
2500 transactions / block = 250 new accounts
per block, or about 250 * 144 blocks/day =
36000 new accounts per day or about 13.15
million new accounts per year, close to the
lower estimate of the number of users.

While it is clearly possible to onboard such a
number of users every year, that's still a small
percentage of the world population.

In consequence, it seems desirable to find
mechanisms to alleviate this load on the
blockchain, both to facilitate the creation of a

11
https://medium.com/@coventureresearch/how-man
y-people-own-bitcoin-9dd3ddd7bba5
12
https://www.statista.com/statistics/647374/worldwi
de-blockchain-wallet-users/

large number of accounts and to keep the the
associated costs within a reasonable limit.

To that end, we envision two possible
mechanisms: surrogate accounts and master
accounts.

4.1 Surrogate accounts 13

A surrogate account is an easypaysy account
that is created in one blockchain but intended
to be used for payments in a different
blockchain.
The generic format of a surrogate account ID
is:

<account_id>[:<surrogate_index>]

Where <surrogate_index> is the index of the
surrogate blockchain, as defined in the
SLIP_0044 standard, and [] implies 14

optionality.
An example of surrogate account ID, hosted in
the Litecoin blockchain could be this:

btc@558470.886/931-486 :2

Conversely, a Litecoin account, hosted in the
Bitcoin blockchain could be like this:

ltc@830209.82/319-003:0

Surrogate accounts let Bitcoin users benefit
from the lower fees of the Litecoin blockchain
while Litecoin users can benefit from the
higher security of the Bitcoin blockchain.

13 This is a planned feature for a future release
of the protocol.

14 See:
https://github.com/satoshilabs/slips/blob/maste
r/slip-0044.m.

 24

https://medium.com/@coventureresearch/how-many-people-own-bitcoin-9dd3ddd7bba5
https://medium.com/@coventureresearch/how-many-people-own-bitcoin-9dd3ddd7bba5
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://github.com/satoshilabs/slips/blob/master/slip-0044.md

4.1.1 Implicit surrogacy

The protocol establishes an implicit surrogacy
between the Bitcoin and Litecoin blockchain.
This allows for a simpler account ID, that hides
the complexity of the surrogation process from
the end user.

Because of that, the two previous example
account IDs could be written simply as:

btc@558470.886/931-486

and
ltc@830209.82/319-003

4.2 Master accounts

While the surrogacy of accounts transfers the
burden from one blockchain to another, it
doesn't completely solve the scaling problem.

Master accounts are another mechanism, also
planned for a future release of the easypaysy
protocol, that enables a scaling of three orders
of magnitude.

A master account is an easypaysy account that
enables the creation of multiple individual
accounts (up to 2048) within a single
blockchain transaction. This way, using the
same assumptions as in the previous point, up
to 13.15 million accounts * 2048, or about 27
billion new accounts, could be easily created
every year, more than enough to accomodate
the whole world population.

4.2.1 Master account IDs

Since the main raison d'être of easypaysy is to
promote ease of use, it is critical that the
implementation details are hidden from the
user. As a result, the format of master account
IDs is designed to mimic that of single-account
IDs, no matter what the underlying differences
may be.

The ID of a master account follows this
structure:

btc@master_idx.slave_id/checksum

Below we can see its constituent parts:

master_idx is a value that represents the order
in which a specific master account has been
created in the blockchain. That is, the first
master account ever created will be 0, the next
will be 1, and so on.

slave_id is a value that points to one individual
(slave) account within the master account. It
encapsulates two items, namely:

- slave_idx, a value that specifies the
individual account within the master
account. It takes values from 0 to
2047.

- slave_chk, the checksum that protects
the integrity of slave_idx . Its value is
calculated with this formula:

slave_chk =
(slave_idx + checksum_chunk_0) %
2048 .

For instance, when slave_idx = 1345,
and checksum_chunk_0 = 847:

slave_chk = (1345+847) % 2408 =

642.

These two items are combined into a single
value, applying this formula:

slave_id = 2048 * slave_idx + slave_chk

Following this example:

slave_id = 2048 * 1345+ 642

 = 2755202

 25

Thus, we could write the Canonical ID of the
slave account #1345 of the master account
#9005 as follows:

btc@9005.2755202/847-967-108-55 3

And this could be its Mnemonic ID:

btc@able-cliff.popular-expect/stable-vault-brand-
medal

4.2.1.1 Parsing the account ID

Every easypaysy ID follows this format:

btc@block_or_master_id.tx_or_slave_id/ checksum

where:

block_or_master_id can either point to the
blockchain block containing a standard
account, or be the ordinal pointing to a master
account and tx_or_slave_id can either point to
the index of the a standard account within a
block or be the ordinal of a slave account
within a master account.

Due to this (intentional) ambiguity, given an
easypaysy ID, the parser must evaluate both
possibilities and opt for the one that is valid.

In case of a collision between a standard and a
master account ID, the checksum must be used
to disambiguate the parsing.

Note: In order to avoid confusion, if the
collision extends up to the first chunk of the
checksum, the master account will be
invalidated and the parser will return the
regular account instead.

4.2.2 Master account metadata

Master account TXs must have an
OP_RETURN output, containing a JSON
document, named

"EASYPAYSY_MASTER_ACCOUNT_DESCRIPTOR",
that includes two items of information, namely:

“Authoritative_server_url”

and
 “Merkle_root”.

The first item, “Authoritative_server_url”
points to the url of the authoritative server, that
the end user can use to request the information
of a particular account, such as:

"Authoritative_server_url":
“https://example.com/easypaysy/master/btc”

The request for a specific slave account, will
append the value of the intended account ID,
like in:

http://example.com/easypaysy/master/btc/acco
unt/9005.2755202

For added privacy, the request can omit the
slave_id part, thus requesting the whole set of
slave accounts within the given master
account, as in:

http://example.com/easypaysy/master/btc/acco
unt/9005

Upon request, the server will return a JSON
document containing the Rendezvous
descriptor for one particular account (including
its Identity key and Value key) or for all the
slave accounts, in case the request didn’t
specify the slave_id.

The user will then issue a second request to get
the Merkle proof:

http://example.com/easypaysy/master/btc/merk
le_proof/9005.2755202

Again, omitting the slave_id will result in the
server returning the whole Merkle tree of the
master account, as in this request:

http://example.com/easypaysy/master/btc/merk
le_proof/9005

 26

http://easypaysy.net/shared/%h
http://easypaysy.net/shared/%h
http://easypaysy.net/shared/%h
http://easypaysy.net/shared/%h
http://easypaysy.net/shared/%h

The user can then calculate the SHA256 digest
of the JSON document received in the first
request and verify that it matches the Merkle
proof received in the second request, in
accordance with the Merkle root included in
the “Merkle_root” attribute within the
EASYPAYSY_MASTER_ACCOUNT_DESCRIPTOR

document.

The Merkle root will be calculated in a similar
manner to the Merkle root of a Bitcoin block,
after sorting all of the accounts in ascending
order of their corresponding SHA256 hash
digests.

4.2.3 Mirror servers

The risk that the authoritative server
designated within the
EASYPAYSY_MASTER_ACCOUNT_DESCRIPTOR could
become unavailable can be mitigated with the
use of mirror servers.

Since the integrity of each individual account
is protected by its hash and the corresponding
Merkle proof, there is no additional risk in
using a mirror instead of the authoritative
server of a master account.
As we have seen before, for added privacy,
-especially when dealing with a mirror server-
a user can request the information of all of the
slave accounts within a particular master
account at once, at the expense of a few extra
kilobytes. Even without compression, 2048
accounts should occupy less than 1 megabyte.

It is conceivable that the mirror could charge
for this service, perhaps requiring a small LN
payment per request, so there will be an
economic incentive to preserve the information
associated with every master account ever
published into the blockchain.

The process to create a Master account requires
some coordination to aggregate the individual
slave accounts. All of these details, including
the definition of the adequate mechanisms to

handle the life cycle of each slave account are
to be defined in the future.

5 Further work

We have presented, grosso modo, the current
status of the protocol. Some, easy to
implement, and potentially useful features,
such as chargebacks, have intentionally been
left out.

They will be added to the protocol in its due
time, probably along with some still
unforeseen capabilities, after we receive
enough feedback and suggestions from the
community. Once we have a clear vision of the
needs and priorities of the different actors of
the ecosystem (users, wallet developers,
hardware makers, etc.), we will freeze the first
set of specifications and publish it along with a
preliminary roadmap at www.easypaysy.org.

In the meantime, during the testing phase, in
order to aid block parsers to discriminate the
different types of easypaysy accounts, the
OP_RETURN metadata should include a
prefix, indicating the kind of account
represented by the transaction. They are
especially critical to identify Master accounts,
since their ID is of an ordinal rather than
positional nature.

During the testing phase, they will take these
names and values:

MAGIC_EP_STANDARD_T : 0x0000000001

MAGIC_EP_SURROGATE_T : 0x0000000002

MAGIC_EP_MASTER_T : 0x0000000003

The definitive set of MAGIC words will
probably have the same length, but different
values.

 27

http://www.easypaysy.org/

6 Conclusions

We proposed easypaysy, a layer-two protocol
designed to fix some of the biggest UX
problems that Bitcoin users face nowadays.

By implementing non-custodial accounts
directly on the blockchain, Bitcoin users have
access to user-friendly account IDs, similar to
current email addresses or bank numbers. This
way, the dreaded bitcoin addresses can be
totally hidden from the user experience, much
like word wide web users never have to see an
ip address.

We have shown that, through the use of both
interactive and non-interactive modes of
operation, easypaysy payments can cover many
different scenarios, while providing similar or
even greater levels of privacy and safety than
currently possible.

We have also seen that it is possible to enact
mechanisms to create and maintain a very large
number of accounts, with a relatively low
impact in the blockchain.

Finally, although easypaysy is meant to be
primarily a system to greatly improve the user
experience, we have shown that it can also give
support to additional features, such as pull
payments, difficult or impossible to implement
without the support of an open infrastructure of
pseudonymous, non-custodial accounts.

References

[1] Wuille, Pieter & Maxwell, Gregory, “Base32 address
format for native v0-16 witness outputs” 2017.
https://github.com/bitcoin/bips/blob/master/bip-0173.med
iawiki

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic
cash system,” 2008. http://bitcoin.org/bitcoin.pdf

[3] Croman, Kyle & Decker, Christian & Eyal, Ittay &
Gencer, Adem Efe & Juels, Ari & Kosba, Ahmed &
Miller, Andrew & Saxena, Prateek & Shi, Elaine & Sirer,
Emin & Song, Dawn & Wattenhofer, Roger. (2016). “On
Scaling Decentralized Blockchains”. Bitcoin and
Blockchain. 9604. 106-125.
10.1007/978-3-662-53357-4_8,
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf

[4] Bartoletti, Massimo, and Livio Pompianu. "An
empirical analysis of smart contracts: platforms,
applications, and design patterns." International
conference on financial cryptography and data security.
https://arxiv.org/pdf/1703.06322.pdf)

 28

https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
https://arxiv.org/pdf/1703.06322.pdf)

